ISIS reports on transmutation

Fleishmann and Pons packed deuterium into a palladium lattice by electrolysis of heavy water. The palladium electrode absorbed a lot of deuterium and the nuclei fused together, generating energy far in excess (about 1 000 fold) of any ordinary electrochemical reactions.

The SPAWAR researchers deposited palladium and deuterium together onto an electrode and speeded up the fusion process with an external electric field (parallel to the electrode surface).

The Fleishman-Pons reactor is a simple electrolytic cell [] In the electrolytic cell, palladium (Pd) was the cathode and platinum the anode. The electrolyte solution contained lithium salts dissolved either in light or heavy water. When electric current is passed through the electrolyte, the water splits into hydrogen/deuterium at the cathode and oxygen at the anode. Pd is used because it absorbs hydrogen/deuterium avidly, thus bringing the atoms close together in its lattice (regularly spaced arrangement of atoms in the solid state).

Blank experiments gave a slightly negative rate of heat generation, on account of heat loss due to evaporation and so on. By contrast, the electrolysis of heavy water resulted in a positive excess rate of heat generation, this rate increasing markedly with current density I, at least as a function of I2, reaching 100 Watt cm-3 at about 1A cm-2.

Prolonged polarization of the palladium electrode in heavy water also resulted in bursts of high rates of heat generation, with the output energy exceeding the input by factors of 40 or more during these bursts.

The excess heat generated tended to go up exponentially with the current. There was a steady rate that appeared to increase slowly with time, with bursts of very high rates superimposed on the slowly increasing steady state.  The bursts occurred at unpredictable times and were of unpredictable duration. Following such bursts, the excess heat production returned to a baseline, which could be higher than that prior to the initiation of the burst.

The heat produced was so great that the electrolytic cells were frequently driven to boiling point, when the rate of heat production just became extremely large. It was not possible to make a quantitative estimate of the heat as the cells and instrumentation were unsuitable for making estimates under those conditions. Also, Fleishman and Pons adopted a policy of discontinuing the experiments (or at least reducing the current density) whenever the water started to boil. At such times, the palladium electrode also started to dissolve, which generated still more heat. They decided to avoid such conditions for fear of uncontrollable energy releases. These bursts of rapid increases of temperature were accompanied by marked increases in the rate of tritium production, suggesting that the nuclear reaction(s) occurring were different from those in the steady state.

[]The research team led by Stanislaw Spzak and Pamela Mosier-Boss at SPAWAR used a modified procedure in which palladium and deuterium were deposited together on a cathode consisting of a thin metal film [6]. In 1995, they first found indications of nuclear activity when the electrolytic cell emitted X-rays with a broad energy distribution, and occasionally with well identifiable peaks. Tritium was detected sporadically and often at low rates. Nevertheless, there were active periods that persisted for days, with tritium produced at approximately 6 x 103 atoms/s.

Ten years later in 2005, they obtained further evidence of nuclear activity: heat generation, hot spots, mini-explosions, radiation, and tritium production; more importantly, they discovered that by placing the electrolytic cell in an external electrostatic field, the reaction(s) could be much speeded up, and new elements produced, among them Al, Si, and Mg []

Under normal conditions when the cell operation is controlled by the cell current and temperature, the nuclear products consisted of X- and g-rays, tritium, and excess heat. However, when the operating cell was placed in an external electric field, the reaction products included the formation of “new elements” as well as the emission of charged particles such as p+ (protons) and a2+ (alpha particles consisting of two protons and two neutrons).

When H2O was substituted for D2O, neither excess heat nor helium-4 was generated.

Instead of a solid palladium cathode, Arata and Zhang used powdered palladium, or palladium black, which greatly increased the absorption surface area for deuterium. The palladium black was placed inside a container kept under a vacuum at constant temperature for 2-3 days before deuterium or hydrogen gas was injected at a constant low flow rate until the powdered palladium was fully saturated with the deuterium/hydrogen.

Using palladium black with extremely small particle size (15 to 40 nm), a high fusion rate was obtained, amounting to >1015 4He2 atoms in the closed inner space of the cathode. In contrast, no 4He2 (or excess heat) was ever generated when hydrogen was used instead of deuterium, or when bulk palladium was used.

Arata and Zhang also developed other materials that better absorbed H2/D2. In one experiment, Pd particles of 5 nm were embedded inside a matrix of ZrO2. ZrO2 on its own does not absorb H2 or D2, but ZrO2-Pd easily absorbed about 3 D atoms per host Pd atom. Arata and Zhang proposed that the D atoms absorbed are effectively solidified as an ultrahigh density deuterium lump inside each octahedral space within the unit cell of the Pd host lattice. These “pycnodeuterium” (heavy deuterium) are dispersed to form a metallic deuterium lattice with body-centred cuboctahedron structure

[]The minimum requirement for transmutation is a metal hydride film or membrane loaded up with hydrogen or deuterium to a high level, and kept in constant flux. Electrode materials have ranged from carbon, nickel, to uranium. The metal hydride can be loaded by electrolysis of water or heavy water using a thin film of the metal as cathode; or else deuterium gas can be made to diffuse through the metal membrane by injecting the gas on one side and evacuating from the other side. But a wide variety of experimental conditions have been used to trigger or speed up the reactions, including surface plasma electrolysis, plasma discharge, laser initiation and external electric or magnetic fields.

The most commonly reported elements are calcium, copper, zinc and iron. They were found in more than 20 different experiments. Forty percent of the least frequently observed elements were rare earths from the lanthanide group: lutetium, terbium praseodymium, europium, samarium, gadolinium, dysprosium, holmium, neodymium and ytterbium.

Yasuhiro Iwamura and colleagues at Mitsubishi’s Advanced Technology Research Center and colleagues have taken another approach to nuclear transmutation by concentrating on the direct transmutation of one element into another.

They used D2 gas permeation through a sandwich of thin alternating layers of palladium (Pd) and CaO sitting on a bottom layer of bulk Pd. Permeation of deuterium is forced through the layers by exposing the top of the sandwich with a thin Pd film to D2 gas while the bottom is maintained under vacuum. On the D2 gas side, dissociative absorption causes the D2 molecules to separate into D atoms, which diffuse though the sandwich towards the vacuum side, where they emerge from the Pd metal, combine and are released as D2 gas. The element to be transmuted is deposited on the top Pd film  of the Pd/CaO sandwich by electrolytic loading from a salt solution. Cesium (Cs), barium (Ba) and strontium (Sr) have been transmuted in this way. The analysis of elements was done in situ, without removing or disturbing the sandwich, using X-ray photoemission spectroscopy (XPS) directed at the topside of the sandwich.

The role of the CaO layer was revealed in an experiment in which Cs was transmuted to Pr. In all three samples with the normal Pd/CaO sandwich, Pr was found as the end product, but not in an experiment without a CaO layer; nor in two experiments in which the CaO layer was replaced by MgO. The CaO layer appeared to increase the deuterium density 10-fold compared to palladium alone. The layer also has a very negative free energy, so that the transition metal Pd serves as a source of interface electrons to screen the positive charges of the deuterons from one another, thereby facilitating fusion and transmutation. It is thought that fusion may have occurred between deuterons to form helium, 4He2, which then further fuses with the heavier nuclei to give the end product.
 
Loading...