The Structure of Scientific Revolutions

[...] one of the things a scientific community acquires with a paradigm is a criterion for choosing problems that, while the paradigm is taken for granted, can be assumed to have solutions. To a great extent these are the only problems that the community will admit as scientific or encourage its members to undertake. Other problems, including many that had previously been standard, are rejected as metaphysical, as the concern of another discipline, or sometimes as just too problematic to be worth the time. A paradigm can, for that matter, even insulate the community from those socially important problems that are not reducible to the puzzle form, because they cannot be stated in terms of the conceptual and instrumental tools the paradigm supplies.

[...] once it has achieved the status of a paradigm, a scientific theory is declared invalid only if an alternate candidate is available to take its place. No process yet disclosed by the historical study of scientific development at all resembles the methodological stereotype of falsification by direct comparison with nature. [...] the act of judgement that leads scientists to reject a previously accepted theory is always based upon more than a comparison of that theory with the world. The decision to reject one paradigm is always simultaneously the decision to accept another, and the judgement leading to that decision involves the comparison of both paradigms with nature AND with each other.

[...] Almost always the men who achieve these fundamental inventions of a new paradigm have been either very young or very new to the field whose paradigm they change. And perhaps that point need not have been made explicit, for obviously these are men who, being little commited by prior practice to the traditional rules of normal science, are particularly likely to see that those rules no longer define a playable game and to conceive another set that can replace them.

[...] Why should a change of paradigm be called a revolution ? In the face of the vast and essential differences between political and scientific development, what parallelism can justify the metaphor that finds revolutions in both ?[...] Political revolutions aim to change political institutions in ways that those institutions themselves prohibit.

[...] Like the choice between competing political institutions, that between competing paradigms proves to be a choice between incompatible modes of community life. Because it has that character, the choice is not and cannot be determined merely by the evaluative procedures characteristic of normal science, for these depend in part upon a particular paradigm, and that paradigm is at issue. When paradigms enter, as they must, into a debate about paradigm choice, their role is necessarily circular. Each group uses its own paradigm to argue in that paradigm defense. [...] whatever its force, the status of the circular argument is only that of persuasion. It cannot be made logically or even probabilistically compelling for those who refuse to step inside the circle. [...] As in political revolutions, so in paradigm choice - there is no standard higher than the assent of the relevant community.

[...] cumulative acquisition of novelty is not only rare in fact but improbable in principle. Normal research, which is cumulative, owes its success to the ability of scientists regularly to select problems that can be solved with conceptual and instrumental techniques close to those already in existence. (That is why an excessive concern with useful problems, regardless of their relation to existing knowledge and technique, can so easily inhibit scientific development.) The man who is striving to solve a problem defined by existing knowledge and technique is not, however, just looking around. He knows what he wants to achieve, and he designs his instruments and directs his thoughts accordingly. Unanticipated novelty, the new discovery, can emerge only to the extent that his anticipations about nature and his instruments prove wrong.

[...] To the extent, as significant as it is incomplete, that two scientific schools disagree about what is a problem and what a solution, they will inevitably talk through each other when debating the relative merits of their respective paradigms. In the partially circular arguments that regularly result, each paradigm will be shown to satisfy more or less the criteria that it dictates for itself and to fall short of a few of those dictated by its opponent. [...] since no paradigm ever solves the problems it defines and since no two paradigms leave all the same problems unsolved, paradigm debates always involve the question: Which problems is it more significant to have solved ?

[...] What a man sees depends both upon what he looks at and also upon what his previous visual-conceptual experience has taught him to see. [...] Far more clearly than the immediate experience from which they in part derive, operations and measurements are paradigm-determined. Science does not deal in all possible laboratory manipulations. Instead, it selects those relevant to the juxtaposition of a paradigm with the immediate experience that the paradigm has partially determined.

[...] Both scientists and laymen take much of their image of creative scientific activity from an authoritative source that systematically disguises - partly for important functional reasons - the existence and significance of scientific revolutions. [...] As the source of authority, I have in mind principally text-books of science together with both the popularizations and the philosophical works modeled on them. [...] All three record the stable OUTCOME of past revolutions and thus display the bases of the current normal-scientific tradition. To fulfill their function they need not provide authentic information about the way in which those bases were first recognized and then embraced by the profession. In the case of textbooks, at least, there are even good reasons why, in these matters, they should be systematically misleading. Textbooks [...] have to be rewritten in whole or in part whenever the language, problem-structure, or standards of normal science change. In short, they have to be rewritten in the aftermath of each scientific revolution, and, once rewritten, they inevitably disguise not only the role but the very existence of the revolutions that produced them.

[...] Textbooks thus begin by truncating the scientist's sense of his discipline's history and then proceed to supply a substitute for what they have eliminated. Characteristically, textbooks of science contain just a bit of history, either in an introductory chapter or, more often, in scattered references to the great heroes of an earlier age. From such references both students and professionals come to feel like participants in a long-standing historical tradition. Yet the textbook-derived tradition in which scientists come to sense their participation is one that, in fact, never existed. For reasons that are both obvious and highly functional, science textbooks (and too many of the older histories of science) refer only to that part of the work of past scientists that can easily be viewed as contributions to the statement and solution of the texts' paradigm problems. Partly by selection and partly by distortion, the scientists of earlier ages are implicitly represented as having worked upon the same set of fixed problems and in accordance with the same set of fixed canons that the most recent revolution in scientific theory and method has made seem scientific. No wonder textbooks and the historical tradition they imply have to be rewritten after each scientific revolution. And no wonder that, as they are re-written, science once again comes to seem largely cumulative.

[...] And Max Plank, surveying his own career in his Scientific Autobiography, sadly remarked that "a new scientific truth does not triumph by convincing its opponents and making them see the light, but rather because its opponents eventually die, and a new generation grows up that is familiar with it".

[...] paradigm debates are not really about relative problem-solving ability, though for good reasons they are usually couched in those terms. Instead, the issue is which paradigm should in the future guide research on problems many of which neither competitor can yet claim to resolve completely. A decision between alternate ways of practicing science is called for, and in the circumstances that decision must be based less on past achievement than on future promise. The man who embraces a new paradigm at an early stage must often do so in defiance of the evidence provided by problem-solving. He must, that is, have faith that the new paradigm will succeed with the many large problems that confront it, knowing only that the older paradigm has failed with a few. A decision of that kind can only be made on faith.

[Source: Thomas S Kuhn - The Structure of Scientific Revolutions]
 
Loading...